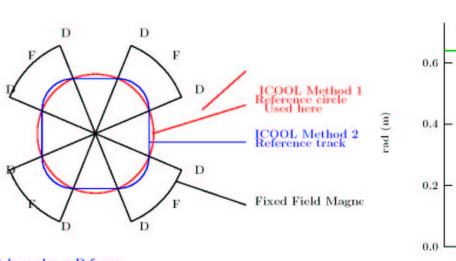
Summers Inverse Cyclotron

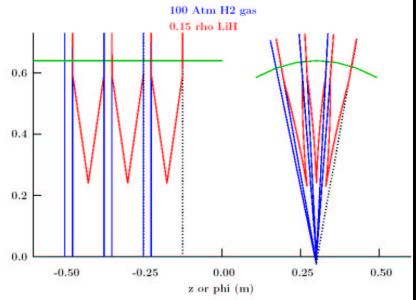
R. Godang and D. Summers

University of Mississippi

May 6, 2005 Oxford-Mississippi

MUCOOL Friday Meeting

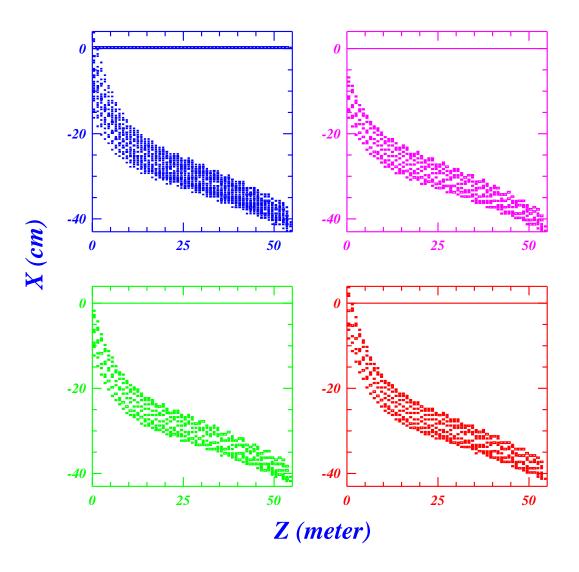




Introduction

- ☐ We are using Kirk and Garren's Ring with Palmer's sinusoidal field
 - Radius of reference orbit is 63.7037 cm
 - Each cell is 1.00065 m long with 45 degrees
 - Whole ring filled with high pressure H2 gas
 - Fine wedges with smooth grade density
- □ Ring and wedges geometry (R. Palmer):

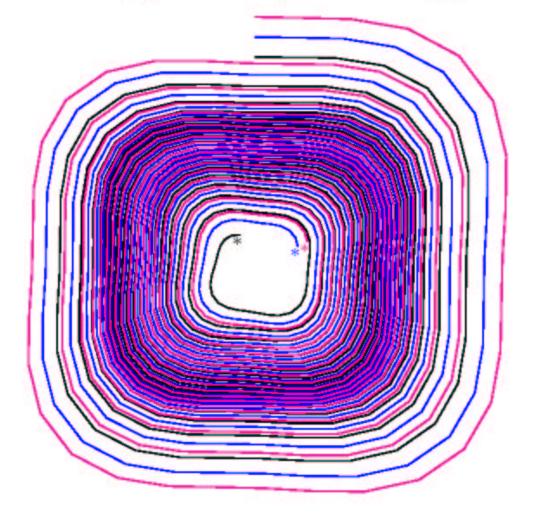
Grade density smoothly with Wedges



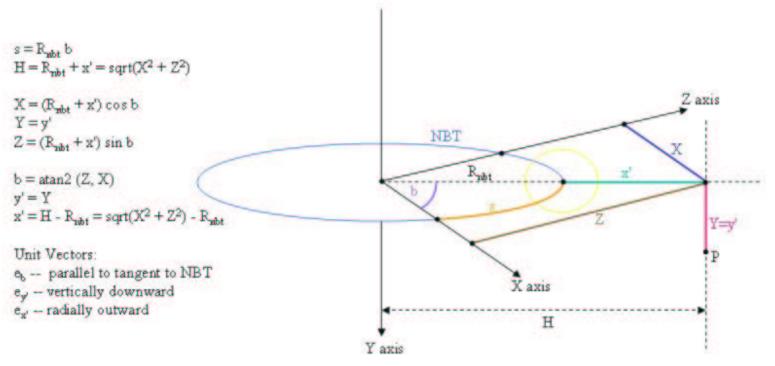
- \bullet Pole angles \equiv D focus
- A "Scaling" FFAF, almost a scaling FFAG

ICOOL in LINUX =

- ☐ We have installed ICOOL 2.85 in LINUX at Mississippi
 - Change all ext from *.for to *.f
 - Convert the files from windows to linux (dos2unix)
 - Include appropriate files: iunix.f, iunixc.c and gmake
 - Recompile all code in Linux and test it
 - It works fine so far!
- ☐ We injected 3 tracks (muon) with momentum:
 - 157 MeV/c (- 9% dp/p)
 - 172 MeV/c (nominal value)
 - 187 MeV/c (+ 9% dp/p)
- ☐ Let energy loss, dE/dx, naturally inject the particles scattering and straggling process are off at the moment



Order: All tracks, 157 MeV/c, 172 MeV/c, and 187 MeV/c (red)



Scatter & Straggle off Input \pm 9% dp/p

Order: 157 MeV/c, 172 MeV/c, and 187 MeV/c

Coordinate Transformation —

- **□** ICOOL uses Frenet-Serret Coordinates
- □ NBT = Nominal Beam Trajectory
 - X = horizontal distance from NBT
 - Y = vertical distance from NBT
 - Z = a distance from starting point along NBT

MUON Capture Solution ____

- □ Slow Negative Muon Capture Solution, when muons stop in the center
- ☐ Surface Muon Beams use Positive Muons
- □ Negative Muons are Captured by Nuclei
- ☐ Use Muon Catalyzed Fusion to freeNegative Muons that may be Captured
- □ Probability that a muon will stick to newly formed He nucleus (Panomarev, Contemporary Physics, 31, 219, 1990)
 - D D mu \rightarrow 0.12
 - D T mu \rightarrow 0.0043
- ☐ In a Deuterium-Tritium Mixture a D T mu molecule is rapidly formed, regardless of how the muon is first captured
- □ The 12% D D mu sticking factor might be enoughOnly Deuterium would be used; no radioactive Tritium
- \square Gas Pressure $\sim 1/1000$ Atmosphere